Optimization of Passive Transmission Lines for Single Flux Quantum Circuits

2021 
Passive transmission lines (PTLs) provide an energy-efficient means of transporting pulsed single flux quantum (SFQ) signals between logic gates and blocks on a chip, or even between chips through a multi-chip module carrier. Although functional up to 70 GHz, our previous designs manifested sharp, length-dependent resonances resulting in diminished operating margins. These are particularly inconvenient since the resonant length is about 1 mm at 40-50 GHz, where most SFQ circuits currently function. To avoid the need to keep the PTLs < 1 mm in length, we have optimized the PTL driver-receiver pairs to sufficiently suppress these resonances; this helps facilitate the use of auto-mated routing tools. We present experimental results, in the 10-70 GHz frequency range, for different driver-receiver pairs designed for PTLs in our dual RSFQ-ERSFQ cell library. This cell library, targeting MIT Lincoln Laboratory's SFQ5ee fabrication process, uses PTLs with two types of ground plane configuration. The first variant has signal in M1 and/or M3 with symmetrical ground planes in M0, M2 and/or M2, M4 respectively. The second variant has signal in M2 and/or M3 with asymmetrical ground planes in M1 and M4. We also present a comparison with wider, 4, PTLs that are more suitable for transport between distant logic blocks. Next, we present experimental results of PTL lengths ranging from 1.2-12 mm over the same 10-70 GHz frequency range. Finally, we report on the design of circuits for investigating crosstalk between two PTLs and their measurement results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []