Fast Solution-Combustion Synthesis of Nitrogen-Modified Li4Ti5O12 Nanomaterials with Improved Electrochemical Performance

2014 
A series of nitrogen-modified Li4Ti5O12 (N-LTO) nanomaterials with hierarchical micro/nanoporous structures are first synthesized via a facile one-step combustion process using thermal decomposition of urea. Successful deposition of a TiN thin layer onto the LTO surface was confirmed by transmission electron microscopy with energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric measurements. The electrochemical performances of the N-LTO nanomaterials are also investigated in this work. Compared with pristine LTO, the N-LTO nanomaterial with 1.1 wt % nitrogen exhibits a higher rate capability and better reversibility. At charge/discharge rates of 1, 2, 8, and 15 C, the discharge capacities of the N-LTO electrode were 159, 150, 128, and 108 mAh g–1, respectively. After 200 cycles at 1 C, its capacity retention was 98.5% with almost no capacity fading.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    58
    Citations
    NaN
    KQI
    []