Artificial neural network correction for density-functional tight-binding molecular dynamics simulations

2019 
The authors developed a Behler–Parrinello-type neural network (NN) to improve the density-functional tight-binding (DFTB) energy and force prediction. The Δ-machine learning approach was adopted and the NN was designed to predict the energy differences between the density functional theory (DFT) quantum chemical potential and DFTB for a given molecular structure. Most notably, the DFTB-NN method is capable of improving the energetics of intramolecular hydrogen bonds and torsional potentials without modifying the framework of DFTB itself. This improvement enables considerably larger simulations of complex chemical systems that currently could not easily been accomplished using DFT or higher level ab initio quantum chemistry methods alone.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    15
    Citations
    NaN
    KQI
    []