Specific inhibition of oncogenic RAS using cell-permeable RAS-binding domains.

2021 
Oncogenic RAS proteins, common oncogenic drivers in many human cancers, have been refractory to conventional small-molecule and macromolecule inhibitors due to their intracellular localization and the lack of druggable pockets. Here, we present a feasible strategy for designing RAS inhibitors that involves intracellular delivery of RAS-binding domain (RBD), a nanomolar-affinity specific ligand of RAS. Screening of 51 different combinations of RBD and cell-permeable peptides has identified Pen-cRaf-v1 as a cell-permeable pan-RAS inhibitor capable of targeting both G12C and non-G12C RAS mutants. Pen-cRaf-v1 crosses the cell membrane via endocytosis, competitively inhibits RAS-effector interaction, and thereby exerts anticancer activity against several KRAS-mutant cancer cell lines. Moreover, Pen-cRaf-v1 exhibits excellent activity comparable with a leading pan-RAS inhibitor (BI-2852), as well as high target specificity in transcriptome analysis and alanine mutation analysis. These findings demonstrate that specific inhibition of oncogenic RAS, and possibly treatment of RAS-mutant cancer, is feasible by intracellular delivery of RBD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []