Skeleton-based action recognition with temporal action graph and temporal adaptive graph convolution structure

2021 
Skeleton-based action recognition has recently achieved much attention since they can robustly convey the action information. Recently, many studies have shown that graph convolutional networks (GCNs), which generalize CNNs to more generic non-Euclidean structures, are more exactly extracts spatial feature. Nevertheless, how to effectively extract global temporal features is still a challenge. In this work, firstly, a unique feature named temporal action graph is designed. It first attempts to express timing relationship with the form of graph. Secondly, temporal adaptive graph convolution structure (T-AGCN) are proposed. Through generating global adjacency matrix for temporal action graph, it can flexibly extract global temporal features in temporal dynamics. Thirdly, we further propose a novel model named spatial-temporal adaptive graph convolutional network (ST-AGCN) for skeletons-based action recognition to extract spatial-temporal feature and improve action recognition accuracy. ST-AGCN combines T-AGCN with spatial graph convolution to make up for the shortage of T-AGCN for spatial structure. Besides, ST-AGCN uses dual features to form a two-stream network which is able to further improve action recognition accuracy for hard-to-recognition sample. Finally, comparsive experiments on the two skeleton-based action recognition datasets, NTU-RGBD and SBU, demonstrate that T-AGCN and temporal action graph can effective explore global temporal information and ST-AGCN achieves certain improvement of recognition accuracy on both datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []