language-icon Old Web
English
Sign In

Self-attracting self-avoiding walk

2019 
This article is concerned with self-avoiding walks (SAW) on \(\mathbb {Z}^{d}\) that are subject to a self-attraction. The attraction, which rewards instances of adjacent parallel edges, introduces difficulties that are not present in ordinary SAW. Ueltschi has shown how to overcome these difficulties for sufficiently regular infinite-range step distributions and weak self-attractions (Ueltschi in Probab Theory Relat Fields 124(2):189–203, 2002). This article considers the case of bounded step distributions. For weak self-attractions we show that the connective constant exists, and, in \(d\ge 5\), carry out a lace expansion analysis to prove the mean-field behaviour of the critical two-point function, hereby addressing a problem posed by den Hollander (Random Polymers, vol. 1974. Springer-Verlag, Berlin, 2009).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []