Electronic Structure of Low-Dimensional Carbon π-Systems

2016 
X-ray absorption spectroscopy (XAS) is combined with density functional theory (DFT) to determine the orbitals of one- and two-dimensional carbon π-systems (lycopene, beta-carotene, retinal, retinol, retinoic acid, coronene, triphenylene). Considerable fine structure is observed for the transition from the C 1s level to the lowest unoccupied molecular orbital (LUMO) and explained by DFT. The wave functions of the one-dimensional chain molecules display the node structure of a vibrating string. The XAS transition energy is decomposed into contributions from the C 1s core level, the π* final state, and the electron–hole interaction. For the latter, we develop a simple model that accurately represents a full Δ-self-consistent field (ΔSCF) calculation. The distortion of the LUMO because of its interaction with the C 1s hole is investigated. These results illustrate the electronic states of prototypical π-bonded carbon structures with low-dimensional character, such as those used in molecular complexes for sol...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []