Temperature Effects on Fluorescence Intensity of Mn-Doped ZnO Quantum Dots Derived from a Sol-Gel Method.

2015 
Recently, various quantum dots (QDs) have been prepared and studied extensively due to their unique electrical and optical properties. Among them, ZnO has attracted much attention because it contains no heavy metals, is biocompatible, and can be easily prepared. In addition, doping QDs with transition metals such as Mn allows for their photo-physical properties to be modified. In this study, Mn-doped ZnO QDs were synthesized by a sol-gel technique, after which the effect of temperature on their fluorescence properties was investigated. The prepared QDs were characterized by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. In addition, their photoluminescence (PL) intensities decreased linearly with temperature between 30 and 70 °C. Intensity also decreased as the amount of Mn increased. Finally, the slope of the PL temperature dependence decreased as the amount of Mn present increased.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []