Genome-wide comparison of DNA methylation between life cycle stages of Drosophila melanogaster using high-throughput sequencing techniques.

2020 
Drosophila melanogaster undergoes holometabolous development, has very low levels of DNA methylation, and is known to possess a single known methyltransferase, dDNMT2. This study compares the DNA methylation patterns between the two life cycle stages of D. melanogaster using a combination of DNA immunoprecipitation and high throughput sequencing techniques. Our results indicate, a change in the chromosomal distribution of the sparse DNA methylation concerning genes and natural transposable elements between in the embryo and the adult stages of D. melanogaster. The differentially methylated regions localised on genes involved in the regulation of cell cycle processes of mitotic cell divisions and chromosomal segregation. dDNMT2 knockout flies exhibited altered patterns of DNA methylation. The observed differences in DNA methylation were in genes involved in cellular communication and cytoskeletal functions. The variation in DNA methylation between the two life cycle stages is indicative that it could have a role in regulatory processes during development and, dDNMT2 may have a role as a co-factor for the hitherto undiscovered DNA methyltransferase in D. melanogaster.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []