Experimental validation of model predictive control stability for autonomous driving

2018 
Abstract This paper addresses the design of time-varying model predictive control of an autonomous vehicle in the presence of input rate constraints such that closed-loop stability is guaranteed. Stability is proved via Lyapunov techniques by adding a terminal state constraint and a terminal cost to the controller formulation. The terminal set is the maximum positive invariant set of a multi-plant description of the vehicle linear time-varying model. The terminal cost is an upper-bound on the infinite cost-to-go incurred by applying a linear–quadratic regulator control law. The proposed control design is experimentally tested and successfully stabilizes an autonomous Scania construction truck in an obstacle avoidance scenario.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    16
    Citations
    NaN
    KQI
    []