Diamond step-index nanowaveguide to structure light efficiently in near and deep ultraviolet regimes.

2020 
Two-dimensional metamaterials, consisting of an array of ultrathin building blocks, offer a versatile and compact platform for tailoring the properties of the electromagnetic waves. Such flat metasurfaces provide a unique solution to circumvent the limitations imposed by their three-dimensional counterparts. Albeit several successful demonstrations of metasurfaces have been presented in the visible, infrared, and terahertz regimes, etc., there is hardly any demonstration for ultraviolet wavelengths due to the unavailability of the appropriate lossless materials. Here, we present diamond as an ultra-low loss material for the near and deep ultraviolet (UV) light and engineer diamond step-index nanowaveguides (DSINs) to achieve full control over the phase and amplitude of the incident wave. A comprehensive analytical solution of step-index nanowaveguides (supported by the numerical study) is provided to describe the underlying mechanism of such controlled wavefront shaping. Due to the ultra-low loss nature of diamond in near and deep UV regimes, our DSINs and metasurfaces designed (from them) exhibit a decent efficiency of ≈ 84% over the entire spectrum of interest. To verify this high efficiency and absolute control over wavefront, we have designed polarization-insensitive meta-holograms through optimized DSINs for operational wavelength λ = 250 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    6
    Citations
    NaN
    KQI
    []