Влияние внешних дестабилизирующих факторов на величину низкочастотного шума интегральных схем
2016
The article presents test results of low-frequency noise measurement at chip pins depending on environment tempera-ture, as well as with an electrostatic discharge impact. The data shows that low-frequency noise may be an informative parameter for integrated circuit diagnostics and grading by their reliability. A low-frequency noise changes under the influence of external factors. The variation value depends on an integrated circuit state. The number of experiments conducted by the authors prove the fact. For example there is a cumulative effect of electrostatic discharge, i.e. each subsequent discharge affects a noise value stronger than the previous one. The dependence of low-frequency noise on a temperature says that the change in an integrated circuit internal state leads noise value changing. Such dependence gives reasons to believe that low-frequency noise may be an indicator of any external influence, which causes changing of integrated circuit internal state. In addition, the sensitivity of low-frequency noise as the informative parameter suggests its value changing during electrostatic defect annealing. As known from literature, after annealing the defects of electrostatic discharges are partially or completely elimi-nated. The noise change after annealing proves a direct correlation between its magnitude and an integrated circuit structure internal state. Thus, the experiments, which show a direct bond between a noise value and an integrated circuit internal state, allow developing techniques for comparative tests and integrated circuit grading by reliability. The article presents a method for comparative assessment of quality and reliability of two or more integrated circuit lots.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI