Interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems using negative curvature.
2021
We propose a primal-dual interior-point method (IPM) with convergence to second-order stationary points (SOSPs) of nonlinear semidefinite optimization problems, abbreviated as NSDPs. As far as we know, the current algorithms for NSDPs only ensure convergence to first-order stationary points such as Karush-Kuhn-Tucker points. The proposed method generates a sequence approximating SOSPs while minimizing a primal-dual merit function for NSDPs by using scaled gradient directions and directions of negative curvature. Under some assumptions, the generated sequence accumulates at an SOSP with a worst-case iteration complexity. This result is also obtained for a primal IPM with slight modification. Finally, our numerical experiments show the benefits of using directions of negative curvature in the proposed method.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
64
References
0
Citations
NaN
KQI