Improving the Performance of Clear Coatings on Wood through the Aggregation of Marginal Gains

2016 
Remarkable increases in the performance of complex systems can be achieved by a collective approach to optimizing individual factors that influence performance. This approach, termed the aggregation of marginal gains, is tested here as a means of improving the performance of exterior clear-coatings. We focused on five factors that influence clear-coating performance: dimensional stability of wood; photostability of the wood surface; moisture ingress via end-grain; coating flexibility and photostability; and finally coating thickness. We performed preliminary research to select effective wood pre-treatments and durable clear-coatings, and then tested coating systems with good solutions to each of the aforementioned issues (factors). Red oak and radiata pine panels were modified with PF-resin, end-sealed, and thick acrylic, alkyd or spar varnishes were applied to the panels. Panels were exposed to the weather and the level of coating defects was assessed every year over a 4-year period. All of the coatings are performing well on PF-modified pine after 4 years’ outdoor exposure. In contrast, coatings failed after 2 years on unmodified pine and they are failing on PF-modified oak. We conclude that our approach shows promise. Future research will build on the current work by developing solutions to additional factors that influence clear-coating performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    11
    Citations
    NaN
    KQI
    []