A Three-Dimensional Deep Learning Framework for Human Behavior Analysis Using Range-Doppler Time Points

2019 
Deep neural networks have shown promise in the radar-based human activity analysis application. Different from existing deep learning models that take either micro-Doppler spectrograms or range profiles as their input, the proposed method can process micromotion signatures in a 3-D way. In this letter, we first transform radar echoes into range-Doppler (RD) time points and then directly process the point sets via a designed 3-D network called the RD PointNet. In fact, our point model is a discrete representation of the motion trajectory. Through this quantitative model, we can use the 3-D network to simultaneously capture human motion profiles and temporal variations. The motion capture simulations and ultrawideband radar measurements show that the proposed framework can achieve superior classification accuracy and noise robustness when compared with image-based methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    6
    Citations
    NaN
    KQI
    []