Design of complex large-scale photonic integrated circuits (PICs) based on ring-resonator structures
2011
The exponentially growing number of components in complex large-scale Photonic Integrated Circuits (PICs) requires
the necessity of photonic design tools with system-level abstraction, which are efficient for designs enclosing hundreds
of elements. Ring-resonators and derived structures represent one example for large-scale photonics integration. Their
characteristics can be parameterized in the frequency-domain and described by scattering matrix (S-matrix) parameters.
The S-matrix method allows time efficient numerical simulations, decreasing the simulation time by several orders of
magnitude compared to time-domain approaches yielding a better modeling accuracy as the number of PIC elements
increases.
We present the modeling of optical waveguides within a sophisticated design environment using application examples
that contain ring-resonators as fundamental structure. In the models, the two orthogonally polarized guided modes are
characterized by their specific index and loss parameters. Systematic variation of circuit parameters, such as coupling
factor or refractive index, allows a comfortable design, analysis and optimization of many types of complex integrated
photonic structures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
5
Citations
NaN
KQI