Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles

2012 
Recently, there has been a lot of interest in using gold nanoparticles (GNPs) for biomedical applications due to their biocompatibility. To increase GNP cell uptake and circulation half-life, and to improve its bio-distribution in?vivo, we chose to coat GNPs with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1?-rac-glycerol) (sodium salt) (POPG) and polyethylene glycol (PEG). Two different methods were used to synthesize POPG-GNPs or PEG-GNPs, but the resulting nanoparticle sizes and morphologies were similar. Under the same incubation conditions, POPG-GNPs can be uptaken quicker than PEG-GNPs by cells?specifically, the maximum uptake was 8?h versus 16?h after incubation. In addition, the uptake amount of POPG-GNPs was more than that of PEG-GNPs. The uptake processes were confirmed by SEM and TEM images. The main reason for the greater uptake of POPG-GNPs can be attributed to the structural similarities between the POPG coating and the cell membrane as well as GNP aggregation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    28
    Citations
    NaN
    KQI
    []