Functionally Graded Tunable Microwave Absorber with Graphene-Augmented Alumina Nanofibers.

2021 
Graphene is currently attracting attention for radiation absorption particularly at gigahertz and terahertz frequencies. In this work, composites formed by graphene-augmented γ-Al2O3 nanofibers embedded into the α-Al2O3 matrix are tested for X-band absorption efficiency. Composites with 15 and 25 wt % of graphene fillers with shielding effectiveness (SE) of 38 and 45 dB, respectively, show a high reflection coefficient, while around the electrical percolation threshold (∼1 wt %), an SE of 10 dB was achieved. Furthermore, based on the dielectric data obtained for varying fractions of graphene-/γ-Al2O3-added fillers, a functionally graded multilayer is constructed to maximize the device efficiency. The fabricated multilayer offers the highest absorption efficiency of 99.99% at ∼9.6 GHz and a full X-band absorption of >90% employing five lossy layers of 1-3-5-15 and 25 wt % of graphene/γ-Al2O3 fillers. The results prove a remarkable potential of the fillers and various multilayer designs for broad-band and frequency-specific microwave absorbers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []