Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flocking

2018 
Flapping flight is the most energetically demanding form of sustained forwards locomotion that vertebrates perform. Flock dynamics therefore have significant implications for energy expenditure. Despite this, no studies have quantified the biomechanical consequences of flying in a cluster flock relative to flying solo. Here, we compared the flight characteristics of homing pigeons (Columba livia) flying solo and in pairs, using high-precision 5 Hz GPS and 200 Hz tri-axial accelerometer biologgers. Paired flight increased route accuracy by ~7%, but, was accompanied by an increase in wingbeat frequency of ~18%. As expected, paired individuals benefitted from improved homing route accuracy, which reduced flight distance by ~7% and time by ~9%. However, realising these navigational gains involved substantial changes in flight kinematics and energetics. Both individuals in a pair increased their wingbeat frequency by c.18%, by decreasing the duration of their upstroke. This sharp increase in wingbeat frequency caused just a 3% increase in airspeed, but reduced the oscillatory displacement of the body by ~22%, which we hypothesise relates to an increased requirement for visual stability and manoeuvrability when flocking. Overall, the shorter flight distances and increased wingbeat frequency in a pair resulted in a net increase in the aerodynamic cost of returning home, which we estimate was ~14%. Our results demonstrate that flocking costs have been underestimated by an order of magnitude and force reinterpretation of their mechanistic origin. We show that, for pigeons, two heads are better than one, but keeping a steady head necessitates energetically costly kinematics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []