Insights into the Cross-world Independence Assumption of Causal Mediation Analysis.

2020 
Causal mediation analysis is a useful tool for epidemiologic research, but it has been criticized for relying on a "cross-world" independence assumption that counterfactual outcome and mediator values are independent even in causal worlds where the exposure assignments for the outcome and mediator differ. This assumption is empirically difficult to verify and problematic to justify based on background knowledge. In the present article, we aim to assist the applied researcher in understanding this assumption. Synthesizing what is known about the cross-world independence assumption, we discuss the relationship between assumptions for causal mediation analyses, causal models, and nonparametric identification of natural direct and indirect effects. In particular, we give a practical example of an applied setting where the cross-world independence assumption is violated even without any post-treatment confounding. Further, we review possible alternatives to the cross-world independence assumption, including the use of bounds that avoid the assumption altogether. Finally, we carry out a numeric study in which the cross-world independence assumption is violated to assess the ensuing bias in estimating natural direct and indirect effects. We conclude with recommendations for carrying out causal mediation analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    4
    Citations
    NaN
    KQI
    []