Pyrolysis dynamics of two medical plastic wastes: drivers, behaviors, evolved gases, reaction mechanisms, and pathways

2021 
Abstract The public has started to increasingly scrutinize the proper disposal and treatment of rapidly growing medical wastes, in particular, given the COVID-19 pandemic, raised awareness, and the advances in the health sector. This research aimed to characterize pyrolysis drivers, behaviors, products, reaction mechanisms, and pathways via TG-FTIR and Py-GC/MS analyses as a function of the two medical plastic wastes of syringes (SY) and medical bottles (MB), conversion degree, degradation stage, and the four heating rates (5,10, 20, and 40 °C/min). SY and MB pyrolysis ranged from 394.4 to 501 and from 417.9 to 517 °C, respectively. The average activation energy was 246.5 and 268.51 kJ/mol for the SY and MB devolatilization, respectively. MB appeared to exhibit a better pyrolysis performance with a higher degradation rate and less residues. The most suitable reaction mechanisms belonged to a geometrical contraction model (R2) for the SY pyrolysis and to a nucleation growth model (A1.2) for the MB pyrolysis. The main evolved gases were C4-C24 alkenes and dienes for SY and C6-C41 alkanes and C8-C41 alkenes for MB. The pyrolysis dynamics and reaction pathways of the medical plastic wastes have important implications for waste stream reduction, pollution control, and reactor optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    16
    Citations
    NaN
    KQI
    []