Robust Fault-Tolerant Tracking Control for Nonlinear Networked Control System: Asynchronous Switched Polytopic Approach

2015 
This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS). Firstly, considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the mean (GUAS-M) and desired weighted performance are guaranteed by combining the switched parameter dependent Lyapunov functional method with the average dwell time (ADT) method, and the feasible conditions for the fault-tolerant tracking controllers are obtained in the form of linear matrix inequalities (LMIs). Finally, the performance of the proposed approach is verified on a highly maneuverable technology (HiMAT) vehicle’s tracking control problem. Simulation results show the effectiveness of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []