Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia-reoxygenation induced apoptosis in H9C2 cells

2017 
Objective: Previous studies have demonstrated Stromal interaction molecule 1 (STIM1)-mediated store-operated Ca 2+ entry (SOCE) contributes to intracellular Ca 2+ accumulation. The present study aimed to investigate the expression of STIM1 and its downstream molecules Orai1/TRPC1 in the context of myocardial ischemia/reperfusion injury (MIRI) and the effect of STIM1 inhibition on Ca 2+ accumulation and apoptosis in H9c2 cardiomyocytes subjected to hypoxia/reoxygenation (H/R). Methods: Expression of STIM1/Orai1/TRPC1 was determined by RT-PCR and Western blot in mice subjected to MIRI and H9C2 cardiomyocytes subjected to H/R. To knock-down STIM1, H9C2 cardiomyocytes was transfected with Stealth SiRNA. Apoptosis was analyzed by both flow cytometry and TUNEL assay. Cell viability was measured by MTT assay. Intracellular Ca 2+ concentration was detected by laser scanning confocal microscopy using Fluo-3/AM probe. Furthermore, the opening of mitochondrial permeability transition pore (mPTP) was assessed by coloading with calcein AM and CoCl 2 , while ROS generation was evaluated using the dye DCFH-DA in H9C2 cardiomyocytes. Results: Expression of STIM1/Orai1/TRPC1 significantly increased in transcript and translation level after MIRI in vivo and H/R in vitro . In H9C2 cardiomyocytes subjected to H/R, intracellular Ca 2+ accumulation significantly increased compared with control group, along with enhanced mPTP opening and elevated ROS generation. However, suppression of STIM1 by SiRNA significantly decreased apoptosis and intracellular Ca 2+ accumulation induced by H/R in H9C2 cardiomyocytes, accompanied by attenuated mPTP opening and decreased ROS generation. In addition, suppression of STIM1 increased the Bcl-2/Bax ratio, decreased Orai1/TRPC1, and cleaved caspase-3 expression. Conclusion: Suppression of STIM1 reduced intracellular calcium level and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cardiomyocytes. Our findings provide a new perspective in understanding STIM1-mediated calcium overload in the setting of MIRI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    16
    Citations
    NaN
    KQI
    []