Antagonistic control of cell fates by JNK and p38-MAPK signaling

2008 
During the development and organogenesis of all multicellular organisms, cell fate decisions determine whether cells undergo proliferation, differentiation, or aging. Two independent stress kinase signaling pathways, p38-MAPK, and JNKs, have evolved that relay developmental and environmental cues to determine cell responses. Although multiple stimuli can activate these two stress kinase pathways, the functional interactions and molecular cross-talks between these common second signaling cascades are poorly elucidated. Here we report that JNK and p38-MAPK pathways antagonistically control cellular senescence, oncogenic transformation, and proliferation in primary mouse embryonic fibroblasts (MEFs). Similarly, genetic inactivation of the JNK pathway results in impaired proliferation of fetal hepatoblasts in vitro and defective adult liver regeneration in vivo, which is rescued by inhibition of the p38-MAPK pathway. Thus, the balance between the two stress-signaling pathways, MKK7JNK and MKK3/6-p38-MAPK, determines cell fate and links environmental and developmental stress to cell cycle arrest, senescence, oncogenic transformation, and adult tissue regeneration. Cell Death and Differentiation (2008) 15, 89–93; doi:10.1038/sj.cdd.4402222; published online 31 August 2007
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    59
    Citations
    NaN
    KQI
    []