Role of vibrational entropy in the stabilization of the high-temperature phases of iron

2014 
The phonon dispersions of the bcc and fcc phases of pure iron ({\alpha}-Fe, {\gamma}-Fe and {\delta}-Fe) at ambient pressure were investigated close to the respective phase transition temperatures. In the open bcc structure the transverse phonons along T1 [{\xi}{\xi}0] and T1 [{\xi}{\xi}2{\xi}] are of particularly low energy. The eigenvectors of these phonons correspond to displacements needed for the transformation to the fcc {\gamma}-phase. Especially these phonons, but also all other phonons soften considerably with increasing temperature. Comparing thermodynamic properties of the fcc and the two bcc phases it is shown that the high temperature bcc phase is stabilized predominantly by vibrational entropy, whereas for the stabilization of the fcc phase electronic entropy provides an equal contribution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    27
    Citations
    NaN
    KQI
    []