High-Volume Light-Load Strength Training, but Not Low-Volume Heavy-Load Strength Training Increases Corticospinal Excitability

2020 
Purpose: To determine whether corticospinal excitability (CSE) and inhibition are differentially modulated following high-volume light-load strength training compared to low-volume heavy-load strength training. We hypothesised high-volume light-load strength training would increase CSE and low-volume heavy-load strength training would reduce intracortical inhibition. Methods: Transcranial magnetic stimulation (TMS) was used to assess CSE, short-interval intracortical inhibition (SICI), and silent period duration (SP) following high-volume light-load strength training (n = 9), low-volume heavy-load strength training (n = 8) compared to a control group (n = 10). Twenty-seven participants completed either (1) low-volume heavy-load strength training (80% one-repetition maximum [1RM]); (2) high-volume light-load strength training (20% 1RM) or (3) a control condition. CSE, SICI and SP were measured using TMS at baseline and four time-points over a 60 min post-exercise period. Results: CSE increased rapidly (within 5 min post-exercise) for high-volume light-load strength training and remained elevated for 60 min compared to low-volume heavy-load strength training and control groups. There were no differences following any training for reduced SICI or SP. Conclusion: These results suggest that high-volume light-load strength training increases the excitability of corticospinal neurons and this increase is likely to be the predominant mechanism for increasing CSE for up to 60 min post training. It may be possible that a greater number of ST sessions are required to observe any differences in the excitability of the intrinsic inhibitory motor-network following high-volume light-load strength training and low-volume heavy-load strength training.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []