A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR
2020
This study explored the effects of polyethylene terephthalate (PET) blending during the pyrolysis of oil shale (OS). Dynamic pyrolysis and co-pyrolysis tests at heating rates in the range from 5 to 40 °C/min were carried out using a thermogravimetric analyzer (TGA) coupled to a Fourier transform infrared spectrometer (FT-IR) to determine the kinetic parameters of the process and for online detection of evolved gasses. Pyrolytic decomposition of OS included a multi-stage decomposition process, while PET decomposed only in a single step. The kinetics of pyrolysis and co-pyrolysis was determined via model-free iso-conversional methods, namely Friedman, FWO, Starink, Vyazovkin, in a conversion degree range of 0.1–0.9. The kinetic models were validated with the obtained data to describe pyrolytic and co-pyrolytic degradation mechanisms, and the regression coefficients were between 0.9823 and 0.9999. The results showed that the activation energy of co-pyrolysis was evidently lower than that of PET or OS pyrolysis. This led to the conclusion that co-pyrolysis could be a potential method for obtaining shale oil due to the synergy between OS and PET.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
4
Citations
NaN
KQI