Novel Mo/Bi2MoO6/Bi3ClO4 heterojunction photocatalyst for ultra-deep desulfurization of thiophene under simulated sunlight irradiation

2021 
Abstract In the present work, a visible-light-driven Mo/Bi2MoO6/Bi3ClO4 heterojunction photocatalyst was fabricated via the Pechini sol–gel process. The type and amount of gelling agent, chelating agent and mole ratio of chelating agent to total metals were balanced to generate ultrafine nanoparticles. The Mo/Bi2MoO6/Bi3ClO4 nanocomposite as a novel photocatalyst not only exhibited an excellent visible-light photocatalytic desulfurization performance of thiophene (~97%), but also had better photodesulfurization efficiency than Mo/Bi2MoO6 and Bi3ClO4 nanostructures. The ultra-deep photocatalytic desulfurization performance of the Mo/Bi2MoO6/Bi3ClO4 nanocomposite can be attributed to the strong visible-light absorption, unique nanostructures, high separation and low recombination of electron–hole pairs due to the as-formed heterojunctions. Furthermore, a photocatalytic desulfurization mechanism was elucidated via radical trapping experiments, which revealed that the •O2− and •OH radicals play a key role in the photocatalytic desulfurization process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []