Identifying anomalous social contexts from mobile proximity data using binomial mixture models
2012
Mobile proximity information provides a rich and detailed view into the social interactions of mobile phone users, allowing novel empirical studies of human behavior and context-aware applications. In this study, we apply a statistical anomaly detection method based on multivariate binomial mixture models to mobile proximity data from 106 users. The method detects days when a person's social context is unexpected, and it provides a clustering of days based on the contexts. We present a detailed analysis regarding one user, identifying days with anomalous contexts, and potential reasons for the anomalies. We also study the overall anomalousness of people's social contexts. This analysis reveals a clear weekly oscillation in the predictability of the contexts and a weekend-like behavior on public holidays.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
15
References
0
Citations
NaN
KQI