Toughening mechanisms in V-Si-N coatings

2021 
Abstract Microstructural evolution and deformation mechanisms of magnetron sputtered V-Si-N coatings with various Si contents are investigated by transmission electron microscopy, X-ray absorption spectroscopy, and ab initio calculations. A small amount of Si atoms was dissolved into the cubic VN lattice, locally reducing the neighboring V-N p-d hybridization near the Si site. The Si content was found to impact the architecture of coating significantly. With increasing Si content, the microstructure evolved through three different architectures: (i) highly textured columnar grains, (ii) refined columnar grains, and (iii) nanocomposite structures where elongated grains were bounded by vein-like boundaries. Enhanced damage tolerance was observed in the nanocomposite structure, where multiple toughening mechanisms become active. Ab initio calculations revealed that the incorporation of Si monolayer in the (1 1 1)-oriented VN resulted in the formation of weaker Si-N bonds compared to V-N bonds, which allowed a selective response to strain and shear deformations by assisting the activation of the slip systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    1
    Citations
    NaN
    KQI
    []