The Effects of Non-TIDAL Components, Depth of Measurement and the Use of Peak Delays in the Application of Tidal Response Methods

2018 
The efficacy and applicability of tidal response methods (TRMs) were assessed in terms of the techniques used, the, data used in the analysis, and the implementation of the methods under different conditions. The tidal efficiency (TE) and time lag (TL) methods were applied to directly measured groundwater head (GWH) values in the Motril-Salobrena coastal aquifer and compared with the same pre-filtered time series after eliminating the non-tidal signals through the continuous wavelet transform (CWT) procedure. The use of maximum and minimum groundwater peaks and sea-level peaks in combination to obtain different delay values and the effects of asymmetries in tidal fluctuations were assessed. Application of the TE method yields different D values when a complete groundwater head time series is considered, instead of the net induced tidal oscillation. Moreover, when the asymmetry of tidal oscillations is not taken into account, the application of TL may yield a higher uncertainty. In unconfined coastal aquifers, hydraulic diffusivity can be overestimated by the TE method if the non-tidal components are not removed from the measured time series of groundwater head. However, prior filtering provides better diffusivity results when the TE method is applied. The depth of the water head measurements leads to different D values when applying the TE method as a consequence of the changes in the specific storage with depth, which result from changes in pressure. The results of the application of the TL method depend on whether maximum or minimum peaks are used. Since the use of maximum peak delays can overestimate D, minimum peak delays are recommended, as they yield D values that are closer to the values obtained using the TE method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []