Three-terminal Weyl complex with double surface arcs in a cubic lattice

2020 
Exploring unconventional topological quasiparticles and their associated exotic physical properties has become a hot topic in condensed matter physics, thus stimulating extensive interest in recent years. Here, in contrast to the double-Weyl phonons (the topological chiral charge +2) in the trigonal and hexagonal crystal systems, we propose that the unconventional double-Weyl without counterparts in high-energy physics can emerge in the phonons of cubic structures, i.e., SrSi2. Employing a two-band k ⋅ p Hamiltonian, we prove that the quadratic double-Weyl nodes are protected by the fourfold screw rotational symmetry $${\tilde{C}}_{4}$$ . Strikingly, we find that the surface arcs are terminated with the Weyl nodes that possess unequal topological charges with opposite sign (i.e., +2 and −1), leading to unique three-terminal Weyl complex (one quadratic double-Weyl and two linear single-Weyl) with double surface arcs in SrSi2. In addition, we apply a uniaxial tensile strain along z-axis to examine the evolution of the three-terminal Weyl complex when the corresponding symmetries are broken. Our work not only provides an ideal candidate for the realization of the quadratic double-Weyl and the corresponding unique surface arc states, but also broadens the understanding of topological Weyl physics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    6
    Citations
    NaN
    KQI
    []