Taylor-Series-Based Reconfigurability of Gamma Correction in Hardware Designs

2021 
Gamma correction is a common image processing technique that is common in video or still image systems. However, this simple and efficient method is typically expressed using the power law, which gives rise to practical difficulties in designing a reconfigurable hardware implementation. For example, the conventional approach calculates all possible outputs for a pre-determined gamma value, and this information is hardwired into memory components. As a result, reconfigurability is unattainable after deployment. This study proposes using the Taylor series to approximate gamma correction to overcome the aforementioned challenging problem, hence, facilitating the post-deployment reconfigurability of the hardware implementation. In other words, the gamma value is freely adjustable, resulting in the high appropriateness for offloading gamma correction onto its dedicated hardware in system-on-a-chip applications. Finally, the proposed hardware implementation is verified on Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit, and the results demonstrate its superiority against benchmark designs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []