The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins

2020 
Understanding which aspects contribute to the thermostability of proteins is a challenge that has persisted for decades, and it is of great relevance for protein engineering. Several types of interactions can influence the thermostability of a protein. Among them, the electrostatic interactions have been a target of particular attention. Aiming to explore how this type of interaction can affect protein thermostability, this paper investigated four homologous cold shock proteins from psychrophilic, mesophilic, thermophilic, and hyperthermophilic organisms using a set of theoretical methodologies. It is well-known that electrostatics as well as hydrophobicity are key-elements for the stabilization of these proteins. Therefore, both interactions were initially analyzed in the native structure of each protein. Electrostatic interactions present in the native structures were calculated with the Tanford-Kirkwood model with solvent accessibility, and the amount of hydrophobic surface area buried upon folding was...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    3
    Citations
    NaN
    KQI
    []