Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy

2017 
Abstract Multimodal imaging-guided synergistic combination therapy has shown great potential for cancer treatment. However, the nanocarrier-based theranostic systems suffer from batch-to-batch variation, complexity of multicomponent, poor drug loading, and carrier-related toxicity issues. To address these issues, herein we developed a novel carrier-free theranostic system with nanoscale characteristics for near-infrared fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging-guided synergistic chemo-photothermal therapy (PTT). Indocyanine green (ICG) and epirubicin (EPI) could co-self-assemble into small molecular nanoparticles (NPs) in aqueous solution without any molecular precursor or excipient via collaborative interactions (electrostatic, π–π stacking, and hydrophobic interactions). The exceptionally high dual-drug loading (∼ 92 wt%) ICG-EPI NPs showed good physiological stability, preferable photothermal response, excellent NIRF/PA imaging properties, pH-/photo-responsive drug release behavior, and promoted cellular endocytosis compared with free ICG or EPI. Importantly, the ICG-EPI NPs showed excellent tumor targeting ability with high spatial resolution and deep penetration via in vivo NIRF/PA dual-modal imaging. Moreover, in comparison with individual chemotherapy or PTT, the combinational chemo-PTT therapy of ICG-EPI NPs with NIR laser irradiation synergistically induced apoptosis and death of cancer cells in vitro , and showed synergistic chemo-PTT efficiency in vivo as evidenced by highly efficient tumor ablation. Furthermore, the ICG-EPI NPs exhibited inappreciable toxicity. This co-self-assembly of both FDA-approved agents provides a safe and “Molecular economical” strategy in the rational design of multifunctional nano-theranostic systems for real-time self-monitoring intracellular drug delivery and targeting multimodal imaging-guided synergistic combination therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    143
    Citations
    NaN
    KQI
    []