Synthesis and properties of a temperature-sensitive chelating hydrogel and its metal complexes

1996 
A temperature-sensitive chelating hydrogel was synthesized by the copolymerization of 1-(β-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H)-pyridinone (AHMP) and N-isopropylacrylamide (NIPAA) in the presence of N,N' -ethylene-bis-acrylamide as a crosslinking agent. The AHMP-NIPAA hydrogel formed a red complex with iron(III) and a pale green complex with Cu(II), respectively. It was observed that the hydrogel and its metal complexes had a high swelling ratio below the temperature of 35°C, while above that temperature the swelling ratios were dramatically decreased. Furthermore, the swelling ratio of the metal complexes was much lower at the swelling temperature (below 35°C) than that of the hydrogel itself, which might be due to the lower flexibility of the complexes. The iron(III) chelating study showed that the hydrogel had a high chelating efficiency at its swelling temperature, while the chelating efficiency of the hydrogel was very low at its deswelling temperature (>35°C). It was found that the chelating efficiency depended on the swelling ratio of the hydrogel in water, which could be explained by the difference in contactable internal surfaces at different temperatures. The hydrogel and its metal complexes could be easily separated at their deswelling temperature. It was also convenient to regenerate the hydrogel with 1 M HCl for reuse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []