Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition
2014
Chemical vapor deposition (CVD) is a promising method of producing a large single-crystal graphene on a catalyst, especially on copper (Cu), and a further increase in domain size is desirable for electro/optic applications. Here, we report on threefold atmospheric-pressure (ATM) annealing for suppressing graphene nucleation in atmospheric CVD. Threefold ATM annealing formed a step and terrace surface of the underlying Cu, in contrast to ATM annealing. Atomic force microscopy and Auger electron mapping revealed that Si-containing particles existed on threefold-ATM- and ATM-annealed surfaces; particles on Cu had a lower density after threefold ATM annealing than after ATM annealing. The formation of a step and terrace surface and the lower density of particles following the threefold ATM annealing would play a role in reducing graphene nucleation. By combining threefold ATM annealing and electropolishing of Cu, the nucleation of graphene was effectively suppressed, and a submillimeter-sized hexagonal single-crystal graphene was successfully obtained.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
19
Citations
NaN
KQI