Visual and haptic perceptibility of 3D printed skeletal models in orthognathic surgery.

2021 
Abstract Objective To assess the anatomical and tactile quality of 3D printed models derived from medical printers for application in orthognathic surgery. Methods A CBCT-scan of an 18 years old female patient was acquired with NewTom VGi evo (NewTom, Verona, Italy). Thereafter, mandibular bone was segmented and isolated from the scan using Mimics inPrint 2.0 software (Materialise NV, Leuven, Belgium). Six printers with different technologies were utilized for printing skeletal models, which included stereolithography (ProX800, 3D Systems, Rock Hill, SC, USA), digital light processing (Perfactory 4 min. XL, Envisiontec, Dearborn, MI, USA), fused deposition modeling (uPrint SE, Stratasys, Eden Prairie, MI, US), colorjet (ProJet CJP 660Pro, 3D Systems, Rock Hill, SC, USA), multijet (Objet Connex 350, Stratasys, Eden Prairie, MN, USA) and selective laser sintering (EOSINT P700, EOS GmbH, Munich, Germany). A questionnaire was designed, where 22 maxillofacial residents scored whether the printed models were able to mimic bone color, texture and anatomy. Five maxillofacial surgeons performed bone cutting with screw insertion/removal to assess the tactile perceptibility. Results In relation to texture and cortical and medullary anatomy replication, Perfactory 4 min. XL printer showed the highest mean score, whereas, Objet Connex 350 scored highest for color replication. The haptic feedback for cutting and screw insertion/removal varied for each printer, however, overall it was found to be highest for ProX800, whereas, EOSINT P700 was found to be least favorable. Conclusions The digital light processing based Perfactory 4 min. XL printer offered the most acceptable anatomical model, whereas, deficiencies existed for the replication of haptic feedback to that of real bone with each printer. Clinical significance The study outcomes provide pearls and pitfalls of 3D printed models utilizing various printers and technologies. There is a need for research on multi-material printing as such to improve the haptic feedback of skeletal models and render the models more human bone-like to improve surgical planning and clinical training.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []