Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation

2019 
Abstract UV-B is a damaging component of solar radiation that inevitably reaches the Earth’s surface. Plants have developed response mechanisms to adapt to UV-B exposure. The alternative oxidase (AOX) catalyzes the ATP-uncoupling cyanide-resistant alternative pathway (AP) in plant mitochondria and is thought to be an important part of the cellular defense network under stress conditions. This study aimed to unravel the poorly understood functional significance of AOX1a induction in Arabidopsis thaliana leaves exposed to ecologically relevant doses of UV-B radiation, by comparing wild-type (WT) plants with plants with modified expression of the AOX1a gene, either downregulated by antisense (AS-12) or overexpressed (XX-2). UV-B exposure resulted in a phenotypic difference between lines. AOX1a overexpression resulted in the highest induction of AOX1A synthesis and MnSOD activity, and the lowest ROS level without pronounced changes in the phenotype relative to other genotypes. In AS-12 plants, expression of the majority of the genes encoding AOX was detected, other non-phosphorylating pathway components and antioxidant enzymes increased along with anthocyanin accumulation in leaves, and the ROS content was lower than in the WT. In addition to the expected AOX1 protein size (34 kDa), an AOX1 30 kDa band appeared under UV-B exposure in all genotypes. However, in AS-12, the alterations in the transcript level and in the abundance of AOX1 protein isoforms induced by UV-B could not fully functionally compensate for the lack of AOX1A. This was confirmed by the observed low AP capacity and increased levels of the oxidized form of ascorbate. These results highlight the importance of AOX in plant response to UV-B for the control of a balanced metabolism, and indicate that AOX1a plays a key role in the regulation of the stress response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    6
    Citations
    NaN
    KQI
    []