EVIDENCE OF SPREADING LAYER EMISSION IN A THERMONUCLEAR SUPERBURST

2016 
When a neutron star (NS) accretes matter from a companion star in a low-mass X-ray binary, the accreted gas settles onto the stellar surface through a boundary/spreading layer. On rare occasions the accumulated gas undergoes a powerful thermonuclear superburst powered by carbon burning deep below the NS atmosphere. In this paper, we apply the non-negative matrix factorization spectral decomposition technique to show that the spectral variations during a superburst from 4U 1636–536 can be explained by two distinct components: (1) the superburst emission characterized by a variable temperature blackbody radiation component and (2) a quasi-Planckian component with a constant, ~2.5 keV, temperature varying by a factor of ~15 in flux. The spectrum of the quasi-Planckian component is identical in shape and characteristics to the frequency-resolved spectra observed in the accretion/persistent spectrum of NS low-mass X-ray binaries and agrees well with the predictions of the spreading layer model by Inogamov & Sunyaev. Our results provide yet more observational evidence that superbursts—and possibly also normal X-ray bursts—induce changes in the disc–star boundary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    12
    Citations
    NaN
    KQI
    []