Traumatic Brain Injury In Vivo and In Vitro Contributes to Cerebral Vascular Dysfunction through Impaired Gap Junction Communication between Vascular Smooth Muscle Cells

2014 
Abstract Gap junctions (GJs) contribute to cerebral vasodilation, vasoconstriction, and, perhaps, to vascular compensatory mechanisms, such as autoregulation. To explore the effects of traumatic brain injury (TBI) on vascular GJ communication, we assessed GJ coupling in A7r5 vascular smooth muscle (VSM) cells subjected to rapid stretch injury (RSI) in vitro and VSM in middle cerebral arteries (MCAs) harvested from rats subjected to fluid percussion TBI in vivo. Intercellular communication was evaluated by measuring fluorescence recovery after photobleaching (FRAP). In VSM cells in vitro, FRAP increased significantly (p<0.05 vs. sham RSI) after mild RSI, but decreased significantly (p<0.05 vs. sham RSI) after moderate or severe RSI. FRAP decreased significantly (p<0.05 vs. sham RSI) 30 min and 2 h, but increased significantly (p<0.05 vs. sham RSI) 24 h after RSI. In MCAs harvested from rats 30 min after moderate TBI in vivo, FRAP was reduced significantly (p<0.05), compared to MCAs from rats after sham TBI...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    12
    Citations
    NaN
    KQI
    []