MEMS deformable mirror CubeSat testbed

2013 
To meet the high contrast requirement of 1 × 10 −10 to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors are a key element of these systems that correct for optical imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. However, high-actuator-count MEMS deformable mirrors have yet to fly in space long enough to characterize their on-orbit performance and reduce risk by developing and operating their supporting systems. The goal of the MEMS Deformable Mirror CubeSat Testbed is to develop a CubeSat-scale demonstration of MEMS deformable mirror and wavefront sensing technology. In this paper, we consider two approaches for a MEMS deformable mirror technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: 1) a Michelson interferometer and 2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload lab prototypes and their utility in defining mission requirements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []