Ceruloplasmin oxidized and deamidated by Parkinson's disease cerebrospinal fluid induces epithelial cells proliferation arrest and apoptosis.

2020 
In Parkinson's disease, the ferroxidase ceruloplasmin (Cp) is oxidized and deamidated by the pathological cerebrospinal fluid (CSF) environment. These modifications promote the gain of integrin binding properties, fostered by the deamidation of two NGR-motifs present in the Cp sequence that convert into the isoDGR-motif. Through isoDGR/integrin binding, the oxidized/deamidated-Cp (Cp-ox/de) mediates cell adhesion and transduces an intracellular signal in epithelial cells that seems to be addressed to regulate cell cycle, proliferation and cytoskeletal re-arrangement. However, the effect fostered on cells by integrins engagement via Cp-ox/de is not known. We found that in HaCaT epithelial cells, the incubation with Cp-ox/de resulted in proliferation inhibition mediated by isoDGR, cell cycle arrest and apoptosis induction. Similar proliferation inhibition was induced by treatment with purified Cp previously incubated in the CSF from Parkinson's disease patients, but not by Cp incubated in the CSF from healthy subjects. In human primary choroid plexus epithelial cells, a possible in vivo target of Cp-ox/de generated in pathological CSFs, we found that Cp-ox/de mediated cell adhesion via isoDGR/integrins binding and transduced an intracellular signal, which resulted in cell proliferation inhibition. Thus, the generation of Cp-ox/de in pathological CSFs and the consequent apoptosis induction of epithelial cells facing the liquor, might represent a novel mechanism that contributes to neurodegeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []