Determination of Carminic Acid in Foodstuffs and Pharmaceuticals by Microchip Electrophoresis with Photometric Detection

2020 
This paper presents a novel miniaturized analytical method for the determination of carminic acid, a natural red food dye, in complex food and pharmaceutical matrices by microchip electrophoresis (MCE) with photometric detection. MCE has become a very attractive microscale separation technique because it offers high-speed, high-throughput, small sample injection volume and low reagents consumption. Fast determination of carminic acid in less than 5 min was achieved on a poly(methyl methacrylate) microchip in anionic separation mode at pH 6. Photometric detector based on light-emitting diode technology was set to a wavelength of 490 nm. Using a sample injection volume of 900 nL, a limit of detection of 69 nmol L−1 was achieved. A wide linear dynamic range over four orders of magnitude (from nmol L−1 to mmol L−1) was observed for peak area. Developed method provided favorable intra- and inter-day repeatability of the migration time (up to 2.5% RSD), as well as the repeatability of the peak area (less than 1.9% RSD), regardless of the sample type. The content of carminic acid was determined in various foodstuffs and pharmaceuticals, such as candies, saffron, non-alcoholic drink, and sore throat lozenges with good recoveries (92.5–104.0%).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []