Maternal serum metabolome and traffic-related air pollution exposure in pregnancy

2019 
Abstract Background Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and neurodevelopmental disorders. By utilizing high-resolution metabolomics (HRM), we investigated perturbations of the maternal serum metabolome in response to traffic-related air pollution to identify biological mechanisms. Methods We retrieved stored mid-pregnancy serum samples from 160 mothers who lived in the Central Valley of California known for high air particulate levels. We estimated prenatal traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter Results In total we extracted 4038 and 4957 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for confounding factors, PLS-DA (Variable Importance in Projection (VIP) ≥2) yielded 181 and 251 metabolic features (HILIC and C18, respectively) that discriminated between the high (n = 98) and low exposed (n = 62). Pathway enrichment analysis for discriminatory features associated with air pollution indicated that in maternal serum oxidative stress and inflammation related pathways were altered, including linoleate, leukotriene, and prostaglandin pathways. Conclusion The metabolomic features and pathways we found to be associated with air pollution exposure suggest that maternal exposure during pregnancy induces oxidative stress and inflammation pathways previously implicated in pregnancy complications and adverse outcomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    29
    Citations
    NaN
    KQI
    []