Metallo-N-Heterocycles - A New Family of Hydrogen Storage Material

2020 
Abstract Storing hydrogen efficiently in condensed materials is a key technical challenge. Tremendous efforts have been given to inorganic hydrides containing B-H, Al-H and/or N-H bonds, while organic compounds with a great variety and rich chemistry in manipulating C-H and unsaturated bonds, however, are undervalued mainly because of their unfavorable thermodynamics and selectivity in dehydrogenation. Here, we developed a new family of hydrogen storage material spanning across the domain of inorganic and organic hydrogenous compounds, namely metallo-N-heterocycles, utilizing the electron donating nature of alkali or alkaline earth metals to tune the electron densities of N-heterocyclic molecules to be suitable for hydrogen storage in terms of thermodynamic properties. Theoretical calculations reveal that the enthalpies of dehydrogenation (ΔHd) of these metallo-N-heterocycles are dependent on the electronegativity of the metals. In line with our calculation results, sodium and lithium analogues of pyrrolides, imidazolides and carbazolides of distinct structures were synthesized and characterized for the first time, where the cation-π interaction was identified. More importantly, a reversible hydrogen absorption and desorption can be achieved over lithium carbazolide which has a hydrogen capacity as high as 6.5 wt% and a suitable enthalpy of dehydrogenation of 34.2 kJ mol-1-H2 for on-board hydrogen storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    7
    Citations
    NaN
    KQI
    []