Amyloid-binding small molecules efficiently block SEVI (semen-derived enhancer of virus infection)- and semen-mediated enhancement of HIV-1 infection.

2010 
Semen was recently shown to contain amyloid fibrils formed from a self-assembling peptide fragment of the protein prostatic acid phosphatase. These amyloid fibrils, termed semen-derived enhancer of virus infection, or SEVI, have been shown to strongly enhance HIV infectivity and may play an important role in sexual transmission of HIV, making them a potential microbicide target. One novel approach to target these fibrils is the use of small molecules known to intercalate into the structure of amyloid fibrils, such as derivatives of thioflavin-T. Here, we show that the amyloid-binding small molecule BTA-EG6 (the hexa(ethylene glycol) derivative of benzothiazole aniline) is able to bind SEVI fibrils and effectively inhibit both SEVI-mediated and semen-mediated enhancement of HIV infection. BTA-EG6 also blocks the interactions of SEVI with HIV-1 virions and HIV-1 target cells but does not cause any inflammation or toxicity to cervical epithelial cells. These results suggest that an amyloid-binding small molecule may have utility as a microbicide, or microbicidal supplement, for HIV-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    51
    Citations
    NaN
    KQI
    []