Mechanism of phencyclidine binding to the acetylcholine receptor from Torpedo electroplaque.

1984 
The mechanism of phencyclidine binding to Torpedo acetylcholine receptor-rich membranes was investigated. The rate of [3H]phencyclidine association is 10(3)- to 10(4)-fold more rapid when phencyclidine and carbamoylcholine are added simultaneously to acetylcholine receptor-rich membranes than when phencyclidine is added to membranes previously equilibrated with carbamoylcholine or membranes in the absence of carbamoylcholine. The mechanism of binding under conditions in which the slower rate was observed was studied with thermodynamic, viscosity, and kinetic experiments. Association and dissociation rates were highly dependent on temperature with activation energies of 26-30 kcal/mole. Viscosity had no effect on the association rate but increased the dissociation rate. These studies suggest that the binding is not diffusion-controlled but rather is limited by a significant energy barrier. The association rate was determined as a function of the concentration of acetylcholine receptor-rich membranes and the concentration of phencyclidine. In the presence of carbamoylcholine, the association rate was highly dependent upon the concentration of acetylcholine receptor but virtually insensitive to the concentration of phencyclidine. In the absence of carbamoylcholine, the association rate seemed to be a hyperbolic function of both the phencyclidine and the acetylcholine receptor concentration. The minimal model capable of explaining the data is a mechanism by which phencyclidine binds to two conformations of the acetylcholine receptor, one conformation having a higher affinity and constituting a lower percentage of receptors and the other having a lower affinity and constituting a higher percentage. The data are consistent with the possibility that the high-affinity conformation is the open-channel state of the acetylcholine receptor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    23
    Citations
    NaN
    KQI
    []