HIV-1 specifically traps CD9 and CD81 tetraspanins within viral buds and induces their membrane depletion
2018
HIV-1 assembly specifically alters both partitioning and dynamics of the tetraspanins CD9 and CD81 forming enriched areas where the virus buds. Importantly the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. To get molecular insights into tetraspanins partitioning in this viral context, we correlated nanoscale CD9 mapping obtained by super resolution microscopy to membrane topography probed by Atomic Force Microscopy (AFM). We demonstrated that CD9 is specifically trapped within the nascent viral particles, especially at buds tips, and that Gag mediate CD9 and CD81 depletion from cellular surfaces, even in the absence of Vpu and Nef, resulting from tetraspanins escaping from the plasma membrane during HIV-1 release. In addition, we showed that CD9 is organized as small membrane assemblies of few tens of nanometers that can coalesce upon Gag expression. Our results support a functional redundancy among tetraspanins upon HIV release.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
1
Citations
NaN
KQI