When Small is Big: The Role of Impurities in Electrocatalysis

2015 
Improvements in the fundamental understanding of electrocatalysis have started to revolutionize the development of electrochemical interfaces for the efficient conversion of chemical energy into electricity, as well as for the utilization of electrons to produce new chemicals that then can be re-used in energy conversion systems. Here, some facets of the role of trace level of impurities (from 10−7 to 10−6 M) in electrocatalysis of the oxygen reduction reaction, hydrogen oxidation and evolution reactions, and CO oxidation reactions are explored on well-characterized platinum single crystal surfaces and high surface area materials in alkaline and acidic environments. Of particular interest is the effect of anions (e.g., Cl−, \( {\text{NO}}_{ 3}^{ - } \)) and cations (i.e., Cu2+) present in the supporting electrolytes as well as surface defects (i.e., ad-islands) that are present on metal surfaces. The examples presented are chosen to demonstrate that a small level of impurities may play a crucial role in governing the reactivity of electrochemical interfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    19
    Citations
    NaN
    KQI
    []